
Task Coordination for
Non-cooperative Planning Agents

Pieter Buzing1, Adriaan ter Mors1, Jeroen Valk1 and Cees Witteveen1,2

1 Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands,

{p.buzing, a.w.termors, j.m.valk, c.witteveen}@ewi.tudelft.nl

2 Centre for Mathematics and Computer Science, P.O. Box 94079, NL-1090 GB
Amsterdam, The Netherlands, C.Witteveen@cwi.nl

Abstract. We consider task planning problems where a number of non-
cooperative agents have to work on a joint problem. Such a problem
consists in completing a set of interdependent, hierarchically ordered
tasks. Each agent is assigned a subset of tasks to perform for which it
has to construct a plan. Since the agents are non-cooperative, they insist
on planning independently and do not want to revise their individual
plans when the joint plan has to be assemled from the individual plans.
We present a formal framework to study some computational aspects of
this non-cooperative coordination problem.

1 Introduction

Many real-life task planning problems such as e.g. manufacturing, logistic plan-
ning and air traffic control can be easily modelled as multi-agent planning prob-
lems: using their individual planning tools and capabilities, a set of planning
agents must come up with a joint solution to a problem consisting of a set of
interdependent tasks. Typically, none of the agents is capable to solve all tasks
and each agent is assigned a disjoint subset of tasks to perform. To complete
its part of the job, each agent has to come up with a plan to perform the tasks
assigned to it. Since interdependent tasks may be assigned to different agents, in
general, the agents are not completely free to construct their own plan; therefore
some form of coordination is needed between them to come up with a joint plan
to complete the planning problem.
In the literature one can distinguish two main approaches to coordination in
multi-agent planning problems. In the first approach (cf [1, 7, 12]) coordination
between the agents is established after the completion of the individual planning
processes. It is assumed that agents independently work on their own part of
the planning problem and achieve a solution for it. Then, in an after-planning
coordination phase, possible conflicts between independently generated individ-
ual plans are resolved and positive interactions between them are exploited by
exchanging and revising parts of the individual plans.

The second approach (cf. [2–4, 6]) treats coordination and planning as inter-
twined processes where the agents continuously exchange planning information
to arrive at a joint solution. For example, in the (G)PGP framework ([2, 3]), plan-
ning and coordination are regarded as part of an iterative process, with plans
of various levels of abstraction being exchanged (and modified) between agents
to achieve a feasible, efficient, and coordinated plan. From a coordination per-
spective, the main difference with the first approach is that positive (negative)
interactions between partial individual plans are exploited (resolved) before each
of the agents comes up with a completely developed plan. This approach there-
fore should be considered as a coordination during planning approach where the
agents are assumed to be fully cooperative, not only with respect to exchanging
information, but also with respect to willingness to revise already constructed
(partial) plans.
In both these coordination by synergy (cf. [1]) approaches, it is taken for granted
that the individual agents are willing to share information and, in case of con-
flicts, to revise their individual plans. Hence, these approaches are less appro-
priate if the agents have a non-cooperative relationship to each other: in such
cases the participating agents will require full planning autonomy, that is they
(i) insist to plan their part independently from the others; (ii) are not prepared
to revise their plan if a joint plan is composed.
This implies that the only possibility for the agents to coordinate is to do so
before they start to plan. In this paper we concentrate on such a coordination
before planning approach for non-cooperative planning agents. Elsewhere (see
[15, 11]), we have discussed some approximation algorithms for achieving such
pre-planning coordination. Here, our main goal is to present a formal framework
to discuss pre-planning coordination problems and to point out the complexity
of the resulting coordination problems.
Organization In Section 2, we present a framework to specify the elements
of our coordination approach. We introduce complex tasks to specify the joint
planning problems we are interested in and we distinguish between precedence
and refinement relations between tasks. In Section 3 we introduce some coor-
dination problems and in Section 4 we analyze their complexity in relation to
the assignment problems distinguished. Finally, in Section 5 we point out some
relations of this coordination problem to the general revision-by-minimal-change
idea and we indicate the significance of this approach for reusing existing single
agent planning methods to solve multi-agent planning problems.

2 Framework

We assume that a set of independent non-cooperative agents A = {A1, A2, . . . , An}
has to complete some joint complex task T . Such a complex task1 is a structure
T = (T, ρ,≺) where T = {t1, t2, . . . tk} is a set of tasks and both ρ and ≺ are
asymmetric and irreflexive relations between tasks t ∈ T . The relation ≺ spec-

1 Complex tasks can be seen to extend task trees (cf. [16]).

ifies a precedence2 relation between tasks in T , t ≺ t′ expressing that t′ cannot
start until t has been completed, i.e., in every plan t has to be planned to occur
before t′. Note that we do not require ≺ to be transitively closed3.
[A few notes on terminology: (i) we will use σ+ to stand for the transitive clo-
sure of a relation σ and σ− to denote its transitive reduction; (ii) two relations
σ and τ are called equivalent, denoted as τ ≡ σ, iff τ+ = σ+; (iii) a relation τ is
said to extend σ, denoted by σ � τ , iff σ+ ⊆ τ+.]
The relation ρ is a refinement relation that specifies a hierarchical task decom-
position relation between tasks in the task network (T, ρ) associated with T ,
closely resembling the way HTN-plans are constructed (see [5]). Specifically, let
ρ(t) = {t′ | tρt′}, then ρ(t) is the set of (sub)tasks that might be used to complete
t. Furthermore, ρ consists of two disjoint subsets: ρ∨, defining an OR-relation
between the subtasks of a task, and ρ∧, defining an AND-relation. We require
that for any task t, ρ(t) is either completely in ρ∨, or completely in ρ∧. Intu-
itively, if ρ(t) ⊆ ρ∧, task t can be completed by performing t or by completing
every subtask t′ ∈ ρ(t); if ρ(t) ⊆ ρ∨, t can be completed by performing t or by
completing one of the subtasks t′ ∈ ρ(t). Finally, we require that for any pair of
tasks t, t′, ρ(t) ∩ ρ(t′) = ∅, i.e. refinements are unique.

t1

t11 t23

t111

t2

t21 t22

t222 t231t221

t12

t1121

t112

t1122

t232

∧

!

!

∨

!

elements of ρ

elements of ⋏

∧

Fig. 1. A complex task with refinement (ρ) and precedence (≺) relations between tasks.
T0 = {t1, t2} is the set of initial tasks. Other tasks are refinements of these tasks. Note
that {t21, t22, t23} = ρ∧(t2), while ρ∨(t11) = {t111, t112}.

The relations ρ and ≺ are related as follows: First of all, ρ and ≺ are orthog-
onal relations, i.e., ρ+∩≺+ = ∅: precedence relations only exist between tasks

2 Note that such a precedence relation can be induced by various other dependency
relations like resource dependencies, organizational regulations, etc.

3 We make a distinction between the relation as specified and the relation induced by
its transitive closure.

that are not refinements of each other. Secondly, precedences are inherited via
refinements, that is, if t ≺ t′ then for all t1 ∈ ρ(t) and for all t2 ∈ ρ(t′) we have
t1 ≺+ t′, t ≺+ t2 and t1 ≺+ t2. See Figure 1 for an example of a complex task
specification.
We inductively define task completion in a task network (T, ρ) as follows:

Definition 1 (task completion). A task t in (T, ρ) is said to be completed if
exactly one of the following conditions holds:

1. t has been performed directly;
2. ∅ 6= ρ(t) ⊆ ρ∨ and there is a task t′ ∈ ρ(t) that has been completed;
3. ∅ 6= ρ(t) ⊆ ρ∧ and all tasks t′ ∈ ρ(t) have been completed;

In Figure 1 for instance, task t11 is completed if either t11 is performed directly,
or if t111 is performed, or if t112 is completed by either performing t112 directly,
or by performing both t1121 and t1122.

Definition 2 (Task network completion). A task network (T, ρ) is said to
be completed if every task t in the set of initial tasks T0 = {t | ρ−1(t) = ∅} has
been completed.

A task network is thus completed if all ’root’ tasks have been completed; in
Figure 1, the task network has been completed if both t1 and t2 have been com-
pleted and these tasks can be completed by e.g. performing the tasks t111, t12, t21,
t221, t222 and t23. Note that the model presented here differs from most other
hierarchical task frameworks in the sense that we do not restrict the tasks to be
performed to the set of leaf-tasks (tasks t for which ρ(t) = ∅).
To perform a certain task t ∈ T , an agent Ai must have the capabilities required
to perform it. We assume that in the entire multi-agent system, m distinct capa-
bilities c1, c2, . . . , cm can be distinguished. We represent the capabilities of agent
Ai by the vector c(Ai) = (c1(Ai), . . . , cm(Ai)) ∈ (N ∪ {∞})m, where cj(Ai)
specifies how much Ai has of capability cj (we will assume integral quantities).
Similarly, the vector c(tj) = (c1(tj), . . . , cm(tj)) ∈ Nm specifies how much of
each capability it takes to execute task tj ∈ T . An agent Ai is said to be able
to perform a subset of tasks Ti ⊆ T iff c(Ai) ≥ Σt∈Tic(t) where x ≥ y iff for all
i = 1, . . . ,m, xi ≥ yi. Note that if cj(Ai) is finite, the capability is considered to
be a consumable resource (i.e., fuel, time, or money). If cj(Ai) =∞, we are deal-
ing with a non-consumable capability (i.e., knowledge or a skill). In the sequel, we
will abbreviate the set of agent capability vectors and the set of task capability
vectors by c(A) and c(T), respectively. A typical instance of our coordination
problem is specified as the free coordination instance (T, ρ,≺, A, c(A), c(T)).
Such an instance specifies the tasks, their refinement relation, dependencies,
and the task as well as the agent capabilities.
To complete the set of tasks T , individual tasks t ∈ T have to be assigned to
agents. Given a task network (T, ρ), first of all we have to define which (subsets
of) tasks can be assigned to agents in order to complete (T, ρ). Such a set T ′ ⊆ T
we call a candidate assignment set and is defined as follows:

Definition 3. T ′ ⊆ T is a candidate assignment set of (T, ρ) if T ′ satisfies the
following requirements:

1. T ′ is a ρ+-independent subset of T , i.e. if t, t′ ∈ T ′ then neither tρ+t′ nor
t′ρ+t should hold; (it is not allowed to perform both a task and one of its
(indirect) subtasks);

2. If t ∈ ρ∨(t′) for some t′ ∈ T then ρ∨(t′)∩T ′ = {t}) (a unique choice ihas to
be made to complete a task by OR-subtasks);

3. (T, ρ) is completed by performing the tasks in T ′ (cf. Definition 1) .

Referring to Figure 1, the set T ′ = {t111, t12, t21, t221, t222, t23} is a candidate
assignment set4. An assignment set is a candidate assignment set T ′ where every
task t ∈ T ′ can be assigned to an agent capable to perform it:

Definition 4 (assignment set). T ′ ⊆ T is an assignment set for a free coor-
dination instance (T, ρ,≺, A, c(A), c(T)) if (i) T ′ is a candidate assignment set
and (ii) there exists a partitioning5 [T ′] = [T1, T2, . . . , Tn] of T ′ such that agent
Ai is able to perform Ti, i.e., c(Ai) ≥ Σt∈Ti

c(t).

After an assignment set has been found6 in a free coordination instance (T, ρ,≺
, A, c(A), c(T)), we have obtained a fixed coordination instance ([Ti]ni=1,≺, A,
c(A), c(T)). Since the capabilities are no longer needed and agents are charac-
terized by the partition blocks of a ρ-independent set T ′ ⊆ T , we often abbreviate
fixed coordination instances by the tuple ([Ti]ni=1,≺). Without loss of generality
we assume every block Ti to be non-empty.

3 Coordination problems

As the result of a task assignment process, in a fixed coordination instance
([Ti]ni=1,≺) the set of precedence constraints ≺ is split up in two disjoint subsets:

1. the set≺intra=
⋃n

i=1 ≺i of intra-agent constraints, where≺i= (≺+ ∩
⋃n

i=1(Ti×
Ti))− is the set of precedence constraints between tasks assigned to the same
agent Ai and

2. the set of inter-agent constraints, i.e., the set of constraints that hold between
tasks assigned to different agents: ≺inter= (≺+ ∩

⋃
i 6=j(Ti × Tj))−.

Each agent Ai now has to solve a subtask (Ti,≺i) generated by the tasks
Ti allocated to it. We assume that in order to complete Ti each agent has to
construct a plan (or schedule) for it. We do not make any assumptions about the

4 Observe that a candidate assignment set does not have strict supersets or strict
subsets that also are candidate assignment sets. Moreover, if ρ = ∅, there is only one
unique candidate assignment set: T ′ = T

5 Since the agents are planning independently, we only consider single-agent task as-
signments (cf. [10]).

6 How tasks should be assigned to agents is a separate problem, which we do not dis-
cuss here. We assume that a suitable task assignment mechanism is selected (cf. [13]).

planning tools used by the agents, or about the particular planning problem the
agent has to solve. Whatever plan/schedule representation the agents (internally)
employ, we assume that such a plan Ai develops for Ti can be represented as
a structure Pi = (Ti, πi) extending7 the structure (Ti,≺i), i.e., π+

i is a partial
order such that ≺i � πi.

Remark 1. When making a plan for a set of tasks Ti, the simplest case is when
Ai exactly knows how to perform a task t and the actions to perform it bear
no relation to the actions performed for another task t′. In that case, a plan
for Ti can be easily composed from the set of actions needed to perform each
individual task. Sometimes, however, there is no such compositionality: the plan
to perform two tasks differs from a simple ordering of the actions performed for
each of the tasks separately. For example, if Ai has to perform the set of tasks
Ti = {buy milk, buy cookies} then his plan might be something along the lines
of: go to supermarket ; get milk ; get cookies ; pay ; go home — the agent will
not first go to the supermarket for the milk, and later return to the supermarket
for the cookies. Thus, in the latter case, the agent has to solve a real planning
problem to complete Ti.

The central coordination problem now can be stated as follows: From the per-
spective of an individual agent, it should be completely autonomous in choosing
its plan, i.e. the exact extension πi of ≺i. Due to the presence of the inter-agent
constraints, however, not every choice of an individual plan will be allowable in
order to construct a joint plan. How then should we coordinate the agents before
planning in order to guarantee both independent planning and a revision-free
combination of plans?

Before we state our coordination problem formally, we first define a joint
plan of the agents Ai in a fixed coordination instance:

Definition 5. A plan P is a joint plan for the coordination instance ([Ti]ni=1,≺)
if P = (T ′, π), where T ′ =

⋃n
i=1 Ti, π+ is a partial order and π extends ≺, i.e.,

≺ � π.

We need to guarantee that individual agents do not need to revise their individual
plans (Ti, πi) in assembling a joint plan from them. That is, the joint plan should
respect each individual plan:

Definition 6. A joint plan P = (T ′, π) respects [exactly respects] the individual
plan Pi = (Ti, πi) of agent Ai if Ti ⊆ T ′ and πi � (π ∩ (Ti × Ti)) [πi ≡
(π ∩ (Ti × Ti))].

We don’t need to specify exactly how the individual plans are assembled to
construct the overall plan. It suffices to consider the case of just joining the
individual partial orderings together with the inter-agent constraints:

Definition 7 (Simple joining). Given a fixed coordination instance ([Ti]ni=1,≺)
and a set { Pi = (Ti, πi) }ni=1 of individual plans, the simple joining of them is
the structure J = (

⋃n
i=1 Ti, ρJ), where ρJ ≡ (≺inter ∪(

⋃n
i=1 πi)).

7 Since a plan Pi at least has to satisfy all intra-agent constraints ≺i.

Now it is not difficult to see that the simple joining exhibits a tell-tale property
w.r.t. respecting individual plans:

Proposition 1. Given a fixed coordination instance ([Ti]ni=1,≺), there exists a
joint plan P for it (exactly) respecting the individual plans Pi = (Ti, πi) of the
agents iff the simple joining J = (

⋃n
i=1 Ti, ρJ) of them induces a partial ordering

of T ′ =
⋃n

i=1 Ti, i.e., if ρ+
J is acyclic.

Proof. (→). Every joint plan P = (T ′, π) (exactly) respecting the collection of
individual plans Pi = (Ti, πi) has to satisfy (at least) the inter-agent constraints
≺inter and each of the individual planning constraints πi. Therefore, ρJ � π
and since π is acyclic, ρJ must be acyclic as well. (←) Note that by definition J
is a joint plan satisfying (T ′,≺). 2

If, for a given fixed coordination instance, it holds that whatever individual plans
are constructed, their simple joining is always acyclic, the instance is said to
be coordinated. Clearly, coordinated instances guarantee independent planning
without the need to revise individual plans whenever a joint plan has to be
constructed. Unfortunately, not every fixed coordination instance is coordinated
(cf. Example 1) and the question arises how to induce this property for every
coordination instance.

Example 1. Consider the following simple case (see Figure 2 (a)): There are two
agents A1 and A2 and four tasks T = {t1, t2, t3, t4}. The precedence relation
≺ is given as ≺ = {(t1, t3), (t4, t2)}. Suppose that t1, t2 are assigned to A1 and
t3, t4 to A2. Then A1 has to solve the subtask ({t1, t2}, ∅) , while A2 has to solve
({t3, t4}, ∅). Note that ≺inter=≺. Suppose now A1 chooses a plan where t2 will
be performed before t1 and A2 chooses a plan where t3 will be performed before
t4 (see Figure 2 (b)). Then there exists no feasible joint plan preserving ≺ and
the individual plans since the combination of their plans with the inter-agent
constraints constitutes a cycle: t1 ≺ t3 π2 t4 ≺ t2 π1 t1, implying that t1 has to
be performed before t1.

The solution we propose consists in adding a minimum set of additional
intra-agent precedence constraints (called a coordination set) such that the inde-
pendence threatening inter-agent constraints are made harmless: Looking back
at Example 1, a possible solution is to add –prior to planning– an additional
constraint, for instance t1 ≺ t2, to the set of intra-agents constraints of agent
A1. Then, whatever plans the agents come up with (respecting their intra-agent
constraints, of course), the results can always be combined into an acyclic joint
plan: by adding such a coordination set the instance has become a coordinated
instance.
In general, such a solution consists in specifying, for each agent Ai, a mini-
mum set ∆i of additional intra-agent constraints such that the resulting instance
([Ti]ni=1,≺ ∪∆), with ∆ =

⋃n
1 ∆i, is a coordinated instance. It is not difficult to

show that such a set ∆ always exists:

Proposition 2. Let ([Ti]ni=1,≺) be a fixed coordination instance. Then there
always exists a set Γ ⊆

⋃n
i=1 Ti × Ti such that ([Ti]ni=1,≺ ∪ Γ) is a fixed coordi-

nation instance that is coordinated.

t1 t3

t4t2

A1 A2

t1 t3

t4t2

A1 A2

(a) (b)

π1 π2

Fig. 2. A set of interdependent tasks T = {t1, t2, t3, t4} and two agents A1 and A2

each assigned to a part of T (a). If agent A1 decides to make a plan where t2 precedes
t1 and A2 makes a plan where t3 precedes t4 (see b), these plans cannot be combined.

Proof. Since ≺+ is a partial order, there always exists a total ordering ≺∗ of
T extending ≺+. For each Ti, let Γi be a smallest set of precedence constraints
such that (≺i ∪Γi)+ =≺∗ ∩ (Ti × Ti) and let Γ =

⋃
Γi. Clearly, (≺ ∪Γ)+ �≺∗

is a partial order, so ([Ti]ni=1,≺ ∪Γ) is a coordination instance. Moreover, for
every i = 1, . . . , n, (≺i ∪Γi)+ totally orders Ti; hence, for every individual plan
Pi = (Ti, πi) we must have πi ≡ (≺i ∪Γi). Hence, ≺ ∪

⋃n
i=1 πi ≡≺ ∪Γ is acyclic

and therefore the instance is coordinated. 2

Given that the set of tasks and precedence constraints is finite, by Proposi-
tion 2, it follows that there always exists a cardinality-minimal set ∆ ⊆

⋃n
i=1 Ti×

Ti such that ([Ti]ni=1,≺ ∪∆) is a coordination instance that is coordinated. In
another paper [15], we have presented a distributed (approximation) algorithm
to approximate such a minimum set ∆ of additional constraints.
In the following section we will now analyze the computational complexity of
some variants of the coordination problem.

4 Coordination problems: complexity results

In the previous section we introduced a simplest version of the coordination
problem. More formally, this problem is specified as follows:

Fixed Coordination Verification (FixCV) Given a fixed coordination in-
stance ([Ti]ni=1,≺) , is it coordinated, i.e. is it true that whenever, for every
i = 1, . . . , n, the extensions πi ⊆ (Ti × Ti) of ≺ ∩(Ti × Ti)) are acyclic, the
relation ≺ ∪

⋃n
i=1 πi is acyclic as well?

In a previous paper ([14]) we have shown this problem to be co-NP complete8.
Intuitively, a counter example for such an instance can be verified in polynomial
8 Due to lack of space, all complexity proofs have been omitted.

time, but finding it is at least as hard as finding examples to instances of the
complement of the NP-complete Path With Forbidden Pairs problem (PWFP)
[9].
Also free coordination instances can be checked for being coordinated:

Free Coordination Verification (FreeCV) Given a free coordination in-
stance (T, ρ,≺, A, c(A), c(T)) does there exist a single-agent task assignment
such that the resulting fixed coordination instance ([Ti]ni=1,≺) is coordinated?
It should come as no surprise that the FreeCV-problem is harder than the
FixCV-problem: by first guessing a task assignment and using a FixCV-oracle
for the resulting fixed coordination instance, we could verify a yes-instance in
polynomial time. Hence, the problem is in Σp

2 . Hardness for this class is shown
by reducing a Σp

2 -complete quantified version of the PWFP-problem to it (cf.
[14]).

Remark 2. It is easy to show that the problem to find a suitable single-agent as-
signment for a free coordination instance is NP-hard for consumable capabilities9

and polynomially solvable for non-consumable capabilities. These differences in
complexity, however, disappear when these assignment problems interact with
the coordination problem: the FreeCV-problem turns out to be Σp

2 -hard for
both assignment conditions.

Both problems ask whether coordination instances are coordinated. More compli-
cated coordination problems ask for the existence of bounded sets of precedence
constraints that, when added to a coordination instance, make it coordinated:

Fixed Coordination (∃FixC) Given a fixed coordination instance ([Ti]ni=1,≺
) and a positive integer10 K > 0, does there exist a coordination set ∆ ⊆⋃n

i=1(Ti×Ti) with |∆| ≤ K such that the fixed coordination instance ([Ti]ni=1,≺
∪∆) is coordinated?

Intuitively, guessing a coordination set ∆, we can verify in polynomial time us-
ing a FixC-oracle whether the instance ([Ti]ni=1,≺ ∪∆) is coordinated. Since
FixCV∈ co-NPC, it follows that FixC∈ Σp

2 . In a previous paper we have shown
the ∃FixC problem to be Σp

2 -complete [14].
At first sight the next problem, Free Coordination, might seem to be more dif-
ficult than the Fixed version:

Free Coordination (∃FreeC) Given a free coordination instance
(T, ρ,≺, A, c(A), c(T)) and a positive integer K > 0, does there exist an as-

signment of tasks to agents and a coordination set ∆ with |∆| ≤ K such that
the resulting fixed coordination instance ([Ti]ni=1,≺ ∪∆) is coordinated?
Note, however, that it suffices to guess both an assignment and a coordination
set ∆ to verify in polynomial time using a FixCV-oracle that the given instance
9 By reduction from e.g. Partition.

10 Note that for K = 0 this problem is equivalent to FixCV.

is a yes-instance. Therefore, the problem is no harder than the FixC-problem.
So, in this case, the complexity of coordination absorbs the complexity of as-
signment.
As it turns out the most difficult coordination problems have to do with guaran-
teeing that every assignment of agents to tasks results in a coordinated or nearly
coordinated instance:

Free for all Coordination (∀FreeC) Given a free coordination instance
(T, ρ,≺, A, c(A), c(T)) and a positive integer K > 0, is it true that for ev-
ery feasible assignment of tasks to agents, there exists a coordination set ∆ ⊆⋃n

i=1(Ti × Ti) with |∆| ≤ K such that the instance ([Ti]ni=1,≺ ∪∆) is coordi-
nated?

Note that by guessing an assignment and using a Σp
2 -oracle for the resulting

∃FixC -problem, we can verify a counter-example. Hence, the problem is in Πp
3

and turns out to be complete for this class, too.

5 Relations to other problems and Conclusions

Conceptually, the pre-planning coordination problem has all the characteristics
of a revision by minimal change problem (cf. [8]): given a system S and a prop-
erty P that S does not but should have, how to minimally change S into a
nearly equivalent system S′ such that P applies to S′. In our coordination prob-
lem, the system S is a set of interdependent tasks assigned to agents and the
desired property is to obtain a joint plan by independent planning. Note that
the problem to solve here is slightly more complicated because the object S is
a construction from a free coordination instance and a task assignment process.
Therefore, more complicated revision-like problems can be raised as: does there
exist a process (a task assignment) resulting in a system S satisfying P , or:
how to ensure that the (task assignment) process results in a system S that
minimally differs from a system S′ having property P .
From an algorithmic point of view the way we approached the coordination prob-
lem is in spirit similar to the well-known divide-and-conquer method: how to
decompose a given problem in a number of independent subproblems that each
can be solved independently whereafter the solutions can be easily assembled
into an overall solution. Essentially, our approach to the coordination problem
comes down to an attempt to extend the divide-and-conquer method by mak-
ing it applicable even to problems that do not allow decomposition: by allowing
minimal revision of the original problem, more problem instances can be solved
by the divide-and-conquer approach than without.
Finally, with respect to planning technology, we note that this approach also
can be used to integrate existing single-agent planning tools into a multi-agent
environment: just decompose your favorite multi-agent problem into a number of
independent single-agent problems by minimally revising the original problem,

let the agents work on them, and then integrate the results into an overall solu-
tion just by joining the individually constructed plans. Since we have shown that
minimal revision is computationally infeasible, practical applications of this idea
should aim at approximating such a minimal revision. In [15] we have applied
such approximations to solve logistic planning problems.

References

1. J.S. Cox and E. H. Durfee. Discovering and exploiting synergy between hierarchical
planning agents. In Second International Joint Conference On Autonomous Agents
and Multiagent Systems (AAMAS ’03), 2003.

2. K. S. Decker and V. R. Lesser. Designing a family of coordination algorithms.
In Proceedings of the Thirteenth International Workshop on Distributed Artificial
Intelligence (DAI-94), pages 65–84, 1994.

3. E. H. Durfee and V. R. Lesser. Partial global planning: a coordination framework
for distributed hypothesis formation. IEEE Transactions on systems, Man, and
Cybernetics, 21(5):1167–1183, 1991.

4. E. Ephrati and J. S. Rosenschein. Multi-agent planning as the process of merging
distributed sub-plans. In Proceedings of the Twelfth International Workshop on
Distributed Artificial Intelligence (DAI-93), pages 115–129, 1993.

5. K. Erol, J. Hendler, and D.S. Nau. HTN planning: Complexity and expressiv-
ity. In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94), volume 2, pages 1123–1128, Seattle, Washington, USA, 1994. AAAI
Press/MIT Press.

6. V. Lesser et al. Evolution of the GPGP/TAEMS Domain-Independent Coordina-
tion Framework. Autonomous Agents and Multi-Agent Systems, 9(1):87–143, July
2004.

7. D.E. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging. Arti-
ficial Intelligence Journal, 57(2–3):143–182, 1992.

8. N. Friedman and J. Y. Halpern. Modeling belief in dynamic systems, part II:
Revision and update. Journal of Artificial Intelligence Research, 10:117–167, 1999.

9. M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to the
theory of NP-completeness. W.H.Freeman, 1979.

10. B. P. Gerkey and M.J. Mataric. A formal analysis and taxonomy of task alloca-
tion in multi-robot systems. In International Journal of Robotics Research, pages
23(9):939–954, 2004.

11. J.M.Valk, M.M. de Weerdt, and C. Witteveen. Algorithms for coordination in
multi-agent planning. I. Vlahavas and D. Vrakas (ed.), Intelligent Techniques for
Planning (to appear), 2004.

12. F. Von Martial. Coordinating Plans of Autonomous Agents, volume 610 of Lecture
Notes on Artificial Intelligence. Springer Verlag, Berlin, 1992.

13. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence, 1998.

14. A. W. ter Mors, J. Valk, and C. Witteveen. Complexity of coordinating au-
tonomous planning agents. Technical Report PDS-2004-002, Delft University, 2004.

15. J. Valk and C. Witteveen. Multi-agent coordination in planning. In Proceedings
PRICAI 2002, pages 335–344, Tokyo, Japan, august 2002. Springer.

16. R. Zlot and A. Stentz. Market-based multirobot coordination using task abstrac-
tion. In Market-based Multirobot Coordiation Using Task Abstraction, International
Conference on Field and Service Robotics, 2003.

